
Journal of Computational Physics 176, 483–506 (2002)

doi:10.1006/jcph.2002.6999, available online at http://www.idealibrary.com on

A Parallelized Meshfree Method with Boundary
Enrichment for Large-Scale CFD

Lucy T. Zhang, Gregory J. Wagner, and Wing K. Liu1

Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road,
Evanston, Illinois 60208

E-mail: l-zhang2@northwestern.edu; g-wagner@northwestern.edu; w-liu@northwestern.edu

Received December 18, 2000; revised August 13, 2001

A parallel computational implementation of a meshfree method—the reproducing
kernel particle method (RKPM)—is used for 3-D implicit CFD analysis. A novel
procedure for implementing the essential boundary condition using the hierarchical
enrichment method is presented. Using this enrichment along the essential boundaries
produces results that more closely match experimental and analytical results for a flow
past a cylinder problem than does either the finite-element method or other meshfree
methods that require matrix inversion for the application of essential boundary con-
ditions. This technique also allows the efficient parallelization of the algorithm and
leads to higher parallel speedups than do other boundary condition implementations,
many of which involve inherently serial steps; this is important, because the expense
of meshfree computations makes parallelization crucial for large-size problems. The
performance of the parallelization technique and the accuracy of the implicit CFD
algorithm are demonstrated in two example problems. c© 2002 Elsevier Science (USA)

Key Words: parallel meshfree methods; finite elements; boundary conditions; CFD.

1. INTRODUCTION

The reproducing kernel particle method (RKPM) is one of the meshfree computational
methods that have been developed in recent years [1, 3, 5, 9, 15, 16]. These methods
have advantages over traditional finite-element methods in their ability to handle large
deformation problems without mesh distortion, and in their solution accuracy due to the
large domain of influence covered by each node. Due to flexibility in constructing the
conforming shape functions to meet specific needs for different applications, it has been
proven that RKPM can enhance numerical performance in CFD problems [10, 20, 21]. The
derivation of the RKPM interpolant and some of its characteristics are outlined in Section 2.

1 Fax: (847)491-3915.

483

0021-9991/02 $35.00
c© 2002 Elsevier Science (USA)

All rights reserved.

484 ZHANG, WAGNER, AND LIU

The explicit dynamic analysis of the parallel computational implementation for RKPM
was first presented by Danielson et al. [8]. By contrast, in the current paper an implicit anal-
ysis is presented. The algorithm includes computing residual vectors and using Newton’s
method iteratively at each time step. The time step can be chosen to be significantly larger
than for explicit analysis for stability reasons.

One difficulty encountered with meshfree methods is the lack of a straightforward ap-
proach for applying essential boundary conditions. This stems from the fact that meshfree
shape functions do not interpolate at the nodes, i.e., for a set of shape functions, �(x),

�I (xJ) �= δI J (1)

and the value of the approximation at a node is not given by nodal parameter values.
Although several methods for the application of essential boundary conditions have been

suggested in the literature (e.g. [11, 20]), most of these are inherently serial operations
and are unsuitable for large-scale parallel implementations. In [8], the essential boundary
condition was implemented on a single processor instead of multiple processors. The parallel
computations of compressible fluid flows by Günther et al. [11] also use just one processor to
apply boundary conditions, due to the difficulty of parallelizing the d’Alembert’s principle
scheme used. In that paper, the difficulties were emphasized and a procedure was sketched
for a parallel algorithm.

We outline in Section 3.2 a method for applying boundary conditions that utilize a
projection of the meshfree shape functions onto a small set of finite-element shape functions.
In this method, we use a complete set of meshfree shape functions that coexist with finite
elements only on the boundary. This allows the numerical properties of the meshfree basis
to extend throughout the domain, all the way to the boundary, while boundary conditions
can be applied as for finite elements; a bridging term that we define handles the interaction
between the two sets of basis functions.

The method was first presented by Wagner and Liu in [22] and was demonstrated in the
solution of a 2-D Laplace equation. This paper extends the method to solve the 3-D Navier–
Stoke equations. Its major advantage is the avoidance of matrix inversion or transformation
for essential boundary condition application, as is required in many approaches. It provides
an efficient algorithm especially for parallel implementation.

Because of the large influence domain of the nodes and the complexity of calculating
meshfree shape functions, computation using RKPM and other meshfree methods is more
intensive than with standard finite elements, especially for large-size problems. With the
common availability of massively parallel computing systems, parallel algorithms for mesh-
free computations are needed to maximize their effectiveness. In this paper we introduce
a parallel computation scheme. The procedure starts with a preprocessing phase that re-
quires the partition of the domain nodes and integration points between the processors.
Each processor calculates the residual of the equations of motion for its own portion of
the domain based on the discretized Navier–Stokes equations derived in Section 3. Nodal
data is communicated using a message passing interface (MPI) at each iteration to update
shared data on all processors. Communication operations are needed in the parallel mesh-
free algorithms between each integration point and its neighboring nodes. After solving the
equations on separate processors, the postanalysis gathers all the information into a single
output file for postprocessing. The detailed communication structures and an outline of the
parallel implicit CFD algorithm are described in Section 4.

A PARALLELIZED MESHFREE METHOD 485

Accuracy and speedup of the method are demonstrated using two example problems in
Section 5.

2. THE REPRODUCING KERNEL PARTICLE METHOD FORMULATION

The kernel estimate was first introduced in the smooth particle hydrodynamics method
(SPH) [18], in which the kernel estimate of a function u(x) is

uK (x) =
∫

�

φa(y − x)u(y) dy. (2)

Note that if the kernel function φa(y − x) is the delta function δ(y − x), then uK (x) =
u(x). Computation of uK (x) on a discrete set of nodes involves two approximations: the
continuous integral is replaced by a summation over nodes, and the kernel function is
chosen to be some approximation to a delta function (e.g., a spline or Gaussian) with
compact support.

The kernel function φa(x) can be generated from a canonical function φ(x) through the
dilation parameter a, which controls the width of the function’s support:

φa(x) = 1

a
φ

(
x
a

)
. (3)

An example of the one-dimensional kernel function is the cubic spline function:

φ(x) =




2
3 − x2

(
1 − |x |

2

)
, 0 ≤ |x | < 1,

1
6 (2 − |x |)3, 1 ≤ |x | ≤ 2,

0, otherwise.

(4)

The discrete form of (2) does not ensure an accurate estimate of u(x). To impose higher
order consistency conditions on the kernel estimate, Liu et al. [16] proposed a reproducing
kernel approximation by introducing a correction function to the kernel estimate,

uh(x) =
∑

I

C(x; xI − x)φa(xI − x)u(xI)�VI , (5)

where uh(x) is the “reproduced” version of u(x). The summation in (5) is taken over a set of
discrete nodes I , and �VI is an appropriate nodal weight, e.g., the spatial volume associated
with node I . We find that the exact choice of �VI has little effect on the computation as
long as the sum of the nodal weights equals the total volume of the domain. The correction
function C(x; xI − x) is included in (5) in order to recover the accuracy that is lost when (2)
is approximated discretely on a bounded domain; it is further defined below. The superscript
h represents a characteristic nodal spacing and is in general chosen to be proportional to a
in Eq. (3). As h and a both go to zero, uh(x) → u(x).

The correction function C(x; y − x) is chosen such that, given some order of accuracy
N , uh(x) = u(x) if u(x) is a polynomial of order less than or equal to N . We take C to have
the form

C(x; y − x) = bT (x)P(y − x), (6)

486 ZHANG, WAGNER, AND LIU

where P(y − x) is the vector of monomial basis functions of order less than or equal to N
and b is a vector of coefficients to be determined:

PT (y − x) = [1, x1 − y1, x2 − y2, x3 − y3, (x1 − y1)
2, . . . , (x3 − y3)

N], (7a)

bT = [b1(x), b2(x), . . .]. (7b)

The coefficients bi (x) are determined by imposing the N th order completeness requirement.
Substituting (6) into (5) and enforcing completeness,

uh(x) = u(x) =
∑

I

bT (x)P(xI − x)φa(xI − x)u(xI)�VI (8)

when u(x) is a polynomial of order ≤N . In this case, u(xI) is exactly represented by its
N th order Taylor expansion about x.

u(xI) = u(x) + (xI 1 − x1)
∂u(x)

∂x1
+ (xI 2 − x2)

∂u(x)

∂x2
+ (xI 3 − x3)

∂u(x)

∂x3
+ · · · (9a)

= PT (xI − x)w(x), (9b)

where

w(x) ≡
[

u(x),
∂u(x)

∂x1
,
∂u(x)

∂x2
,
∂u(x)

∂x3
, · · ·

]T

. (10)

Substituting (9b) into (8) and solving for b(x) gives

b(x) = M−1(x)P(0), (11)

where

M(x) ≡
∑

I

P(xI − x)PT (xI − x)φa(xI − x)�VI . (12)

Using (6) and (11) in (5) allows the reproducing equation to be rewritten as

uh(x) =
∑

I

�I (x)uI , (13)

where uI = u(xI), and the shape function �I (x), which is independent of u(x), is

�I (x) = PT (0)M−1(x)PT (xI − x)φa(xI − x)�VI . (14)

In the next section we show how this approximation of a function through its values
at a discrete set of nodes (13) can be used in a Galerkin solution of the Navier–Stokes
equations.

A PARALLELIZED MESHFREE METHOD 487

3. IMPLICIT FORMULATION

3.1. The Governing Equations

We consider here incompressible, Newtonian fluids with constant density ρ and dynamic
viscosity µ, flowing in a domain � with boundary �. The Navier–Stokes equations are
written in index form in terms of velocity ui and pressure p as follows.

1. Conservation of mass is

ui,i = 0 in �. (15)

2. Conservation of momentum is

ρui,t + ρu j ui, j = σi j, j + ρbi , (16)

where bi is the i th body force component. The Cauchy stress tensor σi j is defined as

σi j = −pδi j + 2µei j , (17a)

ei j = 1

2
(ui, j + u j,i) in �. (17b)

3. Boundary conditions, in addition to the equations of motion, are stipulated as

ui = gi , x ∈ �gi , (18a)

σi j n j = hi , x ∈ �hi , (18b)

where gi and hi are given functions. The fluid boundary � is partitioned into �gi and �hi

such that for each degree of freedom i , � = �gi ∪ �hi while �gi ∩ �hi = 0 (i.e., the Dirichlet
and Neumann condition boundaries span the entire fluid surface but do not intersect).

The transformation of the strong form of the conservation equations (15) and (16) into
weak forms suitable for solution with RKPM requires two test functions: the velocity test
function δui and the pressure test function δp. The velocity test function δui satisfies the
homogeneous boundary condition:

δui = 0, x ∈ �gi . (19)

The standard Galerkin method for advection-dominated flows of incompressible fluids
leads to undesirable oscillations in the velocity and pressure solutions. To reduce or eliminate
these oscillations, the test functions are augmented with stabilization terms [4, 13],

δṽi = δui + τmukδvi,k + τ cδp,i , (20a)

δ p̃ = δp + τ cδui,i , (20b)

where τm and τ c are scalar stabilization parameters that are in general functions of the
computational grid, the time-step size, and the flow variables [14].

The weak form of the continuity equation (15) is obtained by multiplying by the pressure
test function δ p̃ and integrating over �:∫

�

(δp + τ cδu j, j)ui,i d� = 0. (21)

488 ZHANG, WAGNER, AND LIU

Similarly, the weak form of the momentum equation (16) is derived by multiplying by
the velocity test function δṽi :∫

�

(δui + τmukδui,k + τ cδp,i)(ρui,t + ρu j ui, j − σi j, j − ρbi) d� = 0. (22)

By rearranging (22) and using integration by parts, the final weak form of the momentum
equation becomes∫

�

ρ(δui + τmukδui,k + τ cδp,i)(u̇i + u j ui, j) d� −
∫

�hi

δvi hi d�hi

−
∫

�g

δviσi j n j d�g +
∫

�

δui, jσi j d� +
∫

�

(τmukδvi,k + τ cδp,i)p,i

−
∫

�

(τmukδvi,k + τ cδp,i)µ(ui, j j + u j,i j) d� = 0. (23)

Note that the last integral on the left-hand-side requires the calculation of the second deriva-
tive of the velocity, ui, j j . For linear finite elements, the term is either equal to zero or approx-
imately zero on element interiors, depending on the grid regularity; ui, j j is a delta function
on element boundaries. For RKPM using cubic splines, ui, j j is a smooth function, and so
this final term can in theory be computed. In practice, however, we neglect this term due
to the cost of the computations and memory space required to calculate and store the sec-
ond derivatives of the RKPM shape functions [21]. The neglect of these second-derivative
stabilization terms is common practice in finite-element computations and has only a small
effect on accuracy for most problems (see, for example, [19]). One reason for this is that the
stabilization parameters τm and τ c are designed to go to zero with decreasing nodal spacing;
in many regions of the flow where second derivatives are large, such as the boundary layer,
the nodal spacing and therefore the stabilization term are small.

The final weak form that is solved is the combination of the momentum equation (21)
and the continuity equation (23):∫

�

ρ(δui + τmukδui,k + τ cδp,i)(u̇i + u j ui, j) d� −
∫

�hi

δvi hi d�hi

−
∫

�g

δviσi j n j d�g +
∫

�

δui, jσi j d� +
∫

�

(τmukδvi,k + τ cδp,i)p,i d�

+
∫

�

(δp + τ cδu j, j)ui,i d� = 0. (24)

3.2. Essential Boundary Conditions

In this paper, essential boundary conditions are applied using the “bridging scale hier-
archical enrichment” method [17, 20]. As mentioned in the introduction, the Kronecker
delta property is not satisfied for meshfree shape functions as it is for finite-element shape
functions [Eq. (1)]. Because of this inequality, a function that is reproduced from a vector of
nodal degrees of freedom via uh(x) = ∑

I �I (x)uI does not take on the values of the nodal
degrees of freedom when evaluated at the nodes, i.e., uh(xI) �= uI . Therefore, essential
boundary conditions cannot be applied simply by enforcing individual values of the nodal
degrees of freedom.

A PARALLELIZED MESHFREE METHOD 489

In order to efficiently enforce essential boundary conditions despite this inconvenience,
we begin by decomposing the total solution uh into two functions:

uh(x) = gh
bound(x) + vh(x). (25)

Here gh
bound(x) is a known function that is based in some way (to be defined) on the

prescribed essential boundary condition u(x) = g(x) on �g, while vh(x) should depend
on the nodal degrees of freedom uI but should go to zero at nodes on the essential
boundary.

The simplest way to construct gh
bound(x) is to interpolate using a set of shape functions that

satisfy the Kronecker delta property on the essential boundary, e.g., the linear finite-element
shape functions. Because only the shape functions associated with the essential boundary
nodes are needed, we define B as the set of nodes on �g and write

gh
bound(x) =

∑
I∈B

NI (x)gI , (26)

where NI (x) is the finite-element shape function at node I and gI = g(xI).
In order to construct vh(x), we first note that Eq. (26) is a projection of g(x) onto the set

of finite-element shape functions at the boundary. We therefore subtract from the RKPM
approximation given in Eq. (13) its own projection onto the same set of shape functions,
giving as desired a vh(x) that is zero on the boundary nodes. Temporarily defining wh(x) ≡∑

I∈A �I (x)u(xI), where A is the set of all nodes (including those on the boundary),

vh(x) = wh(x) −
∑
I∈B

NI (x)wh(xI)

=
∑
I∈A

�I (x)uI −
∑
I∈B

NI (x)

[∑
J∈A

�J (xI)u J

]

=
∑
I∈A

[
�I (x) −

∑
J∈B

NJ (x)�I (xJ)

]
uI . (27)

The projection of the RKPM approximation on the set of boundary finite-element shape
functions is the “bridging scale” referred to in the name of the method [22].

Substituting (26) and (27) into (25),

uh(x) =
∑
I∈B

NI (x)gI +
∑
I∈A

�̃I (x)uI , (28)

where

�̃I (x) ≡ �I (x) −
∑
J∈B

NJ (x)�I (xJ). (29)

It can be easily shown that for a node K on the essential boundary, uh(xK) = gK . Thus
the essential boundary conditions can be applied directly through the coefficients gI . The
summation in the definition of the modified shape functions (29) is nonzero only within

490 ZHANG, WAGNER, AND LIU

elements that contain one or more nodes lying on the essential boundary. Therefore, through-
out most of the domain the usual meshfree shape functions can be used unchanged. In addi-
tion, there is no need to create an entire finite-element mesh, as only one layer of elements
on the essential boundary is necessary.

An example of both unmodified and modified 1-D RKPM shape functions whose supports
span seven nodes is shown in Fig. 1, along with the field emission microscopy (FEM)

FIG. 1. Unmodified (above) and modified (below) 1-D RKPM shape functions and FEM boundary shape
functions. FEM shape functions are the piecewise linear functions at either end. Different line styles are included
only to distinguish neighboring shape functions. Note that only the finite-element shape functions are nonzero at
the boundary in the modified plot.

A PARALLELIZED MESHFREE METHOD 491

boundary shape functions. Note that after modification, only the FEM functions are nonzero
at the boundary nodes.

Remarks.

• This method of applying boundary conditions preserves the N th-order accuracy of the
RKPM shape functions [20].

• When used in a Galerkin solution, the order of convergence of the RKPM method is
preserved as long as it is noted that boundary integrals such as

∫
�g

δuiσi j n j d�g in the weak
form (24) are nonzero, since the boundary conditions are enforced only on the boundary
nodes and not on the entire boundary [12, 20].

• There is no matrix inversion or transformation necessary for the application of bound-
ary conditions, as is needed for many methods [10, 20]. For this reason, this method
provides better performance in parallel algorithms than do other methods, such as the
corrected collocation method [20], in which the most memory-efficient means of solving
(e.g., matrix LU decomposition and back-substitution) result in inherently serial proce-
dures.

• The function gh
bound(x) is a known function, independent of the nodal degrees of free-

dom uI , and will therefore contribute to the right-hand-side in a Galerkin solution. Further-
more, variations of uh(x) to be used as test functions reduce to

δuh(x) = δuh(x) =
∑
I∈A

�̃I (x)δuI . (30)

3.3. Discretization of the Weak Form

The discretizations of the conservation equations are written using the modified shape
functions �̃(x) to enforce essential boundary conditions. The velocity and pressure func-
tions, ui (x) and p(x), along with the test functions δui (x) and δp(x), are interpolated
as

uh
i (x) =

∑
I∈Bui

NI (x)gi I +
∑
I∈A

�̃I (x)ui I , (31a)

δuh
i (x) =

∑
I∈A

�̃I (x)δui I , (31b)

ph(x) =
∑
I∈Bp

NI (x)sI +
∑
I∈A

�̃I (x)pI , (31c)

δph(x) =
∑
I∈A

�̃I (x)δpI . (31d)

Subscripts on the boundary node sets B are included as a reminder that the essential boundary
conditions may be applied at different nodes for different variables. The coefficients sI are
included in Eq. (31c) for those cases in which an essential boundary condition for the
pressure is enforced. For many simulations there is no such condition on the pressure; in
these cases, the set Bp is empty, and �̃(x) = �(x) for the pressure interpolation.

492 ZHANG, WAGNER, AND LIU

Substituting Eq. (31b) and Eq. (31d) into Eq. (24) gives

∑
I∈A

∫
�

ρ
(
δui I �̃I + τmuh

k δui I �̃I,k + τ cδpI �̃I,i
)(

u̇h
i + uh

j u
h
i, j

)
d�

+
∑
I∈A

∫
�

δui I �̃I, jσ
h
i j d� +

∑
I∈A

∫
�

(
τmuh

k δui I �̃I,k + τ cδpI �̃I,i
)

ph
,i d�

−
∑
I∈A

∫
�hi

δui I �̃I hi d�hi −
∑
I∈A

∫
�gi

δui I �̃I σi j n j d�gi

+
∑
I∈A

∫
�

(δpI �̃I + τ cδui I �̃I,i)u
h
i,i d� = 0, (32)

where uh
i and ph are calculated from (31a) and (31c), respectively. We avoid making this

substitution explicitly in order to emphasize that no large-system matrices are computed or
stored in our formulation.

By the arbitrariness of the test function degrees of freedom δui I and δpI , we have four
equations at each node I ,

ru
i I = 0, (33a)

r p
I = 0, (33b)

where the residual vectors ru
i I and r p

I are

ru
i I =

∫
�

ρ
(
�̃I + τmuh

k �̃I,k
)(

u̇h
i + uh

j u
h
i, j

)
d� −

∫
�hi

�̃I hi d�hi −
∫

�gi

�̃I σi j n j d�gi

+
∫

�

�̃I, jσ
h
i j d� +

∫
�

τmuh
k �̃I,k ph

,i d� +
∫

�

τ c�̃I,i u
h
j, j d�, (34a)

r p
I =

∫
�

ρτ c�̃I,i
(
u̇h

i + uh
j u

h
i, j

)
d� +

∫
�

τ c�̃I,i ph
,i d� +

∫
�

�̃I uh
i,i d�. (34b)

The residuals in Eq. (34) are evaluated at each iteration in our solution algorithm (see
Section 4.3) by first computing uh

i and ph and their derivatives at every integration point
according to (31a) and (31c). The integration points can be chosen based either on the
elements of a corresponding finite-element grid or in a regular array unrelated to the nodal
distribution. In our work, we use the former method; generally, we find that we require one
integration point at the center of each tetrahedral element.

3.4. Time Integration Scheme

Velocity and pressure are to be solved at every time step using the residual equations
(34) derived in the previous section. Specifically, we calculate �um

i I and pm+1
I , where the

superscript m denotes the current time step and

�um
i I = um+1

i I − um
i I . (35)

A PARALLELIZED MESHFREE METHOD 493

The increment of the velocity at time m, �um , is used to calculate the time derivative of
the velocity approximation, u̇h

i :

u̇h
i = uh,m+1

i − uh,m
i

�t
= 1

�t

∑
I∈A

�̃I �um
i I . (36)

The value of the velocity approximation uh
i in Eq. (34) is evaluated as

uh
i = αuh,m+1

i + (1 − α)uh,m
i (37)

=
∑
I∈B

NI gi I +
∑
I∈A

�̃I
(
um

i I + α�um
i I

)
, (38)

where 0 ≤ α ≤ 1. In this work we use α = 1
2 for a central-difference scheme. Note that p

is always computed at m + 1; there is no central difference on p.
Newton’s method is used at each time step for this implicit algorithm with initial guesses

�um = 0 and pm+1 = pm . The vectors of increments in velocity and pressure, �uincr and
pincr , are solved iteratively to satisfy the nonlinear residual equations (34):

rw
i (um, �um + uincr , pm+1 + pincr) = 0, (39a)

rq(um, �um + uincr , pm+1 + pincr) = 0. (39b)

Taylor expanding (39) gives

rw
i (um,�um, pm+1) + rw

i,u(u
m, �um, pm+1)�uincr + rw

i,p(u
m, �um, pm+1)pincr ≈ 0, (40a)

rq(um, �um, pm+1) + rq
,u(u

m, �um, pm+1)�uincr − rq
,p(u

m, �um, pm+1)pincr ≈ 0. (40b)

The resulting matrix equation, linear in �uincr and pincr , is

[
rw

i,u rw
i,p

rq
,u rq

,p

] {
�uincr

pincr

}
=

{
−rw

i

−rq

}
. (41)

The unknowns �um and pm can be updated as

�um → �um + �uincr , (42a)

pm+1 → pm+1 + pincr . (42b)

This Newton step is repeated for a fixed number of iterations or until the norms of the
residual vector, rw

i and rq , are below a given tolerance before proceeding to the next time
step.

We solve the linear system of Eq. (41) using the generalized minimum residual (GM-
RES) algorithm with diagonal preconditioning. The minimization property of this method
ensures that even an incomplete GMRES procedure decreases the residual. In combi-
nation with Newton’s method, a very small Krylov subspace is enough to obtain fast

494 ZHANG, WAGNER, AND LIU

convergence to the solution of a nonlinear problem. In the solution of matrix equation
Ax = b, the GMRES algorithm requires the repeated multiplication of a given vector by
matrix A. In our implementation, we compute each of these matrix–vector products with-
out evaluating the individual elements of the matrix. Instead, the analytical expression
for the residual derivatives is used to directly compute the product of the matrix on the
left-hand-side of Eq. (41) with a given vector. This strategy greatly reduces the amount
of memory necessary for storage, at the cost of a slight increase in the total number of
computations.

4. PARALLEL COMPUTATION ANALYSIS

The CFD code is parallelized based on a domain-decomposition message-passing para-
digm to be executed on a CRAY T3E using the message passing interface (MPI) li-
brary. Currently, we are using the 256-processor CRAY T3E-1200 at the Army HPC Re-
search Center as our computing platform. Each processor has 512 Mbytes of dedicated
memory.

4.1. Communication Structure

Because the physical domain is partitioned between processors, communication is re-
quired. There are two sets of geometrical entities that must be distributed. First, the nodes
themselves are assigned to different processors. Each processor stores the “official” data
for its own nodes, and updates at each time step. In addition, numerical computation of
the integrals in the conservation equations must be done by evaluating at a discrete set of
integration points. To compute efficiently, each processor should therefore also receive a
subset of the integration points and be responsible for calculating the contribution to the
residual vectors at those points (see Fig. 2). In order to evaluate a function at a given inte-
gration point, a processor must have information about all nodes under whose domain of
influence that integration point falls. The integration point in turn contributes to the residual
computed at each of those same influence nodes. These nodes are not necessarily among
the ones “owned” by that processor, but are distributed among different processors, neces-
sitating communication at each iteration. For every evaluation of the residual vectors, each
processor seeks from the other processors the data at the nodes that are needed by its own
integration points. This is known as a gather operation. Once this data has been used to
compute the residual vectors, each processor has a piece of the residual vector at all nodes
whose domains include any one of that processor’s integration points. The goal, however,
is for each processor to have the entire residual at each of its own nodes. So the reverse
of the previous communication step must take place; each processor sends the residual it
has computed at a given node to the processor that is responsible for that node, where the
total residual is stored. This is called a scatter operation. Both gather and scatter operations,
which are sometimes are referred to as a swap-and-add procedure, must be performed at
every iteration. This process is shown in Fig. 3.

4.2. Partitioning Schemes

In the code, the nodes and integration points are assigned to the processors based on
a domain-decomposition algorithm, in which each processor receives and is responsible

A PARALLELIZED MESHFREE METHOD 495

FIG. 2. Communication for finite-element and meshfree methods.

for computing on a partition of the domain �. Due to the large domain of influence of
each node, meshfree methods require more communication time than similar-sized parallel
finite-element computations. In order to minimize the required amount of communication,
the domain is partitioned before the analysis in such a way that each processor “owns”
a large number of integration points and nodes that neighbor each other. In our work
thus far, the nodes and integration points are sorted according to their x-coordinates in
ascending order. Using this algorithm, the nodes are numbered from left to right in the
geometry domain that is to be solved, as in Fig. 4. This saves communication time between
processors because in most cases a node does not need to communicate with neighbors that
may belong to another processor; most often, neighbors belong to the same processor after
partitioning.

This partitioning method is used in our code for simplicity. There are a variety of dif-
ferent partitioning codes or softwares, such as Metis, that can be easily used as a “black
box” [8].

496 ZHANG, WAGNER, AND LIU

FIG. 3. Gather and scatter operation for the meshfree method.

4.3. Outline of Procedures

This section includes the algorithm for implementing RKPM implicit analysis.

1. Serial preprocessing
i. Read geometry data

ii. Partition the nodes and integration points onto each processor
2. Parallel analysis on each processor

i. Read the input partitioned data
ii. Set up data structure for local analysis

iii. Calculate shape functions �I (x) and their derivatives, Eq. (14)
iv. Calculate the modified shape functions �̃(x) and their derivatives, Eq. (29)

3. Time increment loop
i. Initialize variables: �dm

i = 0, pm+1 = pm

ii. Newton iteration loop
a. Calculate the residuals, Eqs. (34)
b. Check residual, if converges, then go to step iii
c. Solve for �dincr and pincr using GMRES, Eq. (41)
d. Update the variables, dm and pm+1, Eqs. (42)

iii. Output the results to files
4. Serial postprocessing

i. Create a single output file for processing

5. NUMERICAL EXAMPLES

5.1. Simple 3-D Flow Past a Circular Cylinder

To validate the code, a uniform flow past a 3-D cylinder is simulated. This flow has been
the subject of many theoretical, experimental, and computational investigations; two notable

A PARALLELIZED MESHFREE METHOD 497

FIG. 4. Before (above) and after (below) nodal partitioning.

examples to which we compare our results are those of Collins and Dennis [6, 7] and Bar-Lev
and Yang [2], who studied analytically the early time history of flow past a cylinder initially
at rest. Our simulations employ parallel RKPM with the enrichment boundary condition
implementation outlined in Section 3.2. For comparision, we have solved the same problem
using both finite elements and RKPM with the “corrected collocation” method for boundary
conditions proposed in [20].

498 ZHANG, WAGNER, AND LIU

FIG. 5. Flow past a cylinder.

A cylinder with a diameter of 1.5 cm with its axis in the z-direction is placed in a uniform
x-directional flow. The dimensions of the computational domain are 21.5 × 14 × 4 cm,
and the cylinder is located 4.5 cm downstream of the inflow (see Fig. 5). Two different
discretizations are used: a coarse discretization with 2236 nodes and 11,628 integration
points, and a fine discretization with 15,447 nodes and 87,646 integration points. For both
nodal distributions, the discretization is finest near the cylinder surface in order to resolve
the boundary layer.

Initially, the velocity is uniform, with speed U0 everywhere. For t > 0, u = 0 is enforced
on the surface of the cylinder. The inflow boundary condition at x = −4.5 cm is uniform
flow of speed U0, while the outflow at x = 17 cm is a zero-stress boundary. The top, bottom,
and sides of the computational domain have zero penetration conditions but allow slip
parallel to the walls.

Figure 6 shows computed drag coefficients for both nodal distributions plotted against
Reynolds number ranging from 10 to 1000 compared with the values obtained from exper-
iments (data from many sources collected by [23], p. 266). As shown on the plot, using the
enrichment method discussed in Section 4.3 to implement the essential boundary condition
yields results closer to the experimental values than does the method without enrichment,
but both methods are more accurate than FEM. The values of drag coefficient for different
Reynolds numbers are tabulated in Table I. Our results seem to indicate that even the coarse
discretization is sufficiently fine to obtain accurate results using RKPM, while the FEM
solution is not fully resolved even with the fine mesh.

The calculated drag coefficients for the early time history are plotted for Reynolds num-
bers of 40, 200, and 1000 in Fig. 7. The time T = U0t/a is nondimensionalized based on
the uniform velocity U0 and the radius of the cylinder, a. The computational results using
RKPM and FEM are compared with the analytical results of Bar-Lev and Yang [2] and
Collins and Dennis [7]. It can be seen that RKPM more closely matches the theory than
does FEM, most likely due to the meshfree shape function’s ability to better represent the
sharp boundary layer.

A PARALLELIZED MESHFREE METHOD 499

FIG. 6. Drag coefficient of the cylinder vs Reynolds number. CBC, collocation boundary condition imple-
mentation; EBC, enrichment boundary condition.

500 ZHANG, WAGNER, AND LIU

TABLE I

Drag Coefficients for Different Reynolds Numbers

Re = 10 Re = 20 Re = 50 Re = 100 Re = 500 Re = 1000

Experimental values 3.3 2.3 1.6 1.4 1.15 1.05
2256 nodes

FEM 8.2% 6.6% 8.7% 7.7% 28% 36%
RKPM-CBC 0.38% 1.4% 2.5% 1.5% 14% 22%
RKPM-EBC 0.0% 0.0% 0.31% 1.1% 8.1% 12%

15,447 nodes
FEM 2.5% 1.4% 3.7% 4.9% 14% 20%
RKPM-CBC 0.041% 0.45% 1.3% 0.79% 2.6% 3.8%
RKPM-EBC 0.0% 0.0% 0.25% 0.36% 1.7% 2.9%

Note. CBC, collocation boundary condition implementation; EBC, enrichment boundary condition.

FIG. 7. Early time history of the drag coefficient for different Reynolds numbers (see Bar-Lev [2], Collins
and Dennis [7]). T = U0t/a.

A PARALLELIZED MESHFREE METHOD 501

FIG. 8. Streamlines for Re = 200 at T = 5 and T = 10 using FEM (a, b) and the meshfree method (c, d).

The 3-D streamline contours of the flow field for Reynolds numbers of 200 and 1000
at different times are presented in Figs. 8 and 9 for both FEM and RKPM solutions. The
vortices and their developments through the early times can be clearly seen in the figures.
This shows that the method that has been used in this paper has the ability to capture the
characteristics of the flow.

The parallel performance on the Cray T3E for this problem is shown in Fig. 10. The
speedup is scaled based on the calculation time of four processors. Although the parallel
performance cannot reach the ideal case of linear speedup, speedup is noticeable when
running the fixed-size problem using up to 32 processors. Communication then dominates
the running time as the number of processors is increased to 64. As mentioned in Section 3.2,
using the enrichment scheme to implement the essential boundary conditions produces better
performance in parallel by eliminating the LU decomposition procedure or inversion of the
matrices necessary for most boundary condition implementations. In the case of RKPM

FIG. 9. Streamlines for Re = 1000 at T = 5 and T = 10 using FEM (a, b) and the meshfree method (c, d).

502 ZHANG, WAGNER, AND LIU

FIG. 10. Parallel performance on a CrayT3E of RKPM for the problem of flow past a cylinder (speedup is
calculated based on the calculation time of using four processors). CBC, collocation boundary condition imple-
mentation; EBC, enrichment boundary condition implementation.

FIG. 11. Flow past a building.

A PARALLELIZED MESHFREE METHOD 503

FIG. 12. The finite-element mesh of the building surface; RKPM nodes are placed at the FEM node locations.

using collocation boundary condition implementation, there is no change in speedup from
the coarse to the fine mesh due to the limited ability of parallelization. However, the parallel
algorithm continues to show improved performance for large-size problems, as also shown
in Fig. 10. The results indicate that the enrichment method is more parallelizable than the
collocation method.

5.2. 3-D Flow Past a Building

The RKPM flow solution method is applied to the uniform flow past a building to show
its parallel application to even larger size problems. The shape of the building is shown in
Fig. 11. The structure is 250 ft in height and has a square base with sides of 50 ft.

504 ZHANG, WAGNER, AND LIU

FIG. 13. Parallel performance on a CrayT3E of RKPM for the problem of flow past a building, using 38,359
nodes and 845,456 integration points (speedup is calculated based on the calculation time of using four processors).
CBC, collocation boundary condition implementation; EBC, enrichment boundary condition implementation.

The computational domain extends 350 ft downstream of the building, and 150 ft upstream
and to each side. It extends vertically from the base of the building to a point 100 ft above the
top of the building. The domain is discretized using 38,359 nodes and 845,456 integration
points. The discretization is much finer at and near the surface of the building than it is
far away. The finite-element mesh on the building surface on which the meshfree nodal
distribution is based is shown in Fig. 12. The boundary conditions are the same as in the
previous example.

The parallel performance on the Cray T3E for this problem is shown in Fig. 13. Com-
munication takes a large percentage of the total time when using 128 processors; therefore,
speedup cannot be seen past 64 processors. Comparing the performance of the RKPM
method with both boundary condition implementations shows that the enrichment bound-
ary condition implementation is more parallelizeable.

6. CONCLUSIONS

The parallel computational implementation of the meshfree method that we have pre-
sented, together with the enrichment boundary condition scheme, has shown advantages
over both the collocation boundary condition scheme and the finite-element method. In the
flow past a cylinder problem, the enrichment boundary condition implementation yields
results closer to the experimental values, presumably because of a better representation of
the boundary layer. It has also captured the characteristics of the basic flow, such as the

A PARALLELIZED MESHFREE METHOD 505

formation of the vortices and vortex shedding. Another advantage is that there is no matrix
inversion or transformation necessary for this application of boundary conditions. There-
fore, this parallel algorithm provides better performance than do other methods. The 3-D
CFD simulation examples have shown promising results in terms of accuracy and speedup
of the algorithm.

ACKNOWLEDGMENTS

We would like to thank Prof. Tezduyar’s computational group at Rice University for providing the original
parallel finite-element code. Help from Prof. Aliabadi at Clark Atlanta University is greatly appreciated. The
authors are sponsored by the Air Force Office of Scientific Research, the National Science Foundation, and the
Army High Performance Computing Research Center, which provided time on its Cray T3E machine.

REFERENCES

1. I. Babuska and J. M. Melenk, The Partition of Unity Finite Element Method, Technical Note BN-1185
(University of Maryland, 1995).

2. M. Bar-Lev and H. T. Yang, Initial flow field over an impulsively started circular cylinder, J. Fluid Mech. 72,
625 (1975).

3. S. Beissel and T. Belytschko, Nodal integration of the element-free Galerkin method, Comput. Methods Appl.
Mech. Eng. 139, 49 (1996).

4. A. N. Brooks and T. J. R. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated
flows with particular emphasis on the incompressible Navier–Stokes equations, Comput. Methods Appl. Mech.
Eng. 32, 199 (1982).

5. M. A. Christon and T. E. Voth, Results for von neumann analyses for reproducing kernel semidiscretizations,
Int. J. Numer. Methods Eng. 47, 1285 (2000).

6. W. M. Collins and S. C. R. Dennis, The initial flow past an impulsively started circular cylinder, Q. J. Mech.
Appl. Math. 26, 53 (1973).

7. W. M. Collins and S. C. R. Dennis, Flow past an impulsively started circular cylinder, J. Fluid Mech. 60, 105
(1973).

8. K. T. Danielson, S. Hao, W. K. Liu, A. Uras, and S. Li, Parallel computation of meshless methods for explicit
dynamic analysis, Int. J. Numer. Methods Eng. 47, 1323 (1999).

9. R. Gingold and J. Monaghan, Kernel estimates as a basis for general particle methods in hydronomics,
J. Comput. Phys. 46, 429 (1982).

10. F. C. Günther, A Meshfree Formulation for the Numerical Solution of the Viscous, Compressible, Navier-
Stokes Equations, Ph.D. thesis. (Northwestern University, Chicago, 1998)

11. F. C. Günther, W. K. Liu, and M. A. Christon, Multi-scale meshfree parallel computations for viscous,
compressible flows, Comput. Methods Appl. Mech. Eng. 190, 279 (2000).

12. W. Han, G. J. Wagner, and W. K. Liu, Convergence analysis of a hierarchical enrichment of dirichlet boundary
condition in a meshfree method. Int. J. Numer. Methods Eng. 53(6), 1323 (2002).

13. T. J. R. Hughes and L. P. Franca, A new finite element formulation for computational fluid dynamics. VII.
The Stokes problem with various well-posed boundary conditions: Symmetric formulations that converge for
all velocity/pressure spaces, Comput. Methods Appl. Mech. Engr. 65, 85 (1987).

14. T. R. Hughes, L. P. Francs, and M. Balestra, A new finite element formulation for computational fluid dynamics.
V. Circumventing the babuska-brezzi condition: A stable Petrov-Galerkin formulation of the stokes problem
accommodating equal-order interpolations, Comput. Methods Appl. Mech. Eng. 59, 85 (1986).

15. W. K. Liu and Y. Chen, Wavelet and multiple scale reproducing kernel methods, Int. J. Numer. Methods Fluids
21, 901 (1995).

16. W. K. Liu, S. Jun, and Y. F. Zhang, Reproducing kernel particle methods, Int. J. Numer. Methods Fluids 20,
1081 (1995).

506 ZHANG, WAGNER, AND LIU

17. W. K. Liu, R. A. Uras, and Y. Chen, Enrichment of the finite element method with the reproducing kernel
particle method, J. Appl. Mech. ASME 64, 861 (1997).

18. J. J. Monaghan, Why particle methods work, SIAM J. Sci. Stat. Comput. 3(4), 422 (1982).

19. T. E. Tezduyar and Y. Osawa, Finite element stabilization parameters computed from element matrices and
vectors, Comput. Methods Appl. Mech. Eng. 190, 411 (2000).

20. G. J. Wagner and W. K. Liu, Application of essential boundary conditions in mesh-free methods: a corrected
collocation method, Int. J. Numer. Methods Eng. 47, 1367 (2000).

21. G. J. Wagner, A Multi-Scale Approach to Large Eddy Simulation via RKPM, Master’s thesis (Northwestern
University, Chicago, 1999).

22. G. J. Wagner and W. K. Liu, Hierarchical enrichment for bridging scales and meshfree boundary conditions,
Int. J. Numer. Methods Eng. 50, 507 (2000).

23. F. White, Fluid Mechanics (McGraw–Hill, New York, 1986).

	1. INTRODUCTION
	2. THE REPRODUCING KERNEL PARTICLE METHOD FORMULATION
	3. IMPLICIT FORMULATION
	FIG. 1.

	4. PARALLEL COMPUTATION ANALYSIS
	FIG. 2.
	FIG. 3.
	FIG. 4.

	5. NUMERICAL EXAMPLES
	FIG. 5.
	FIG. 6.
	TABLE I
	FIG. 7.
	FIG. 8.
	FIG. 9.
	FIG. 10.
	FIG. 11.
	FIG. 12.
	FIG. 13.

	6. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

